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ABSTRACT

Context. Instabilities in oscillating loops are believed to be essential for dissipating the wave energy and heating the solar coronal
plasma.
Aims. Our aim is to study the development of the Kelvin-Helmholtz (KH) instability in an oscillating loop that is driven by random
footpoint motions.
Methods. Using the PLUTO code, we performed 3D simulations of a straight gravitationally stratified flux tube. The loop footpoints
are embedded in chromospheric plasma, in the presence of thermal conduction and an artificially broadened transition region. Using
drivers with a power-law spectrum, one with a red noise spectrum and one with the low-frequency part subtracted, we excited standing
oscillations and the KH instability in our loops, after one-and-a-half periods of the oscillation.
Results. We see that our broadband drivers lead to fully deformed, turbulent loop cross-sections over the entire coronal part of the
loop due to the spatially extended KH instability. The low RMS velocity of our driver without the low-frequency components supports
the working hypothesis that the KH instability can easily manifest in oscillating coronal loops. We report for the first time in driven
transverse oscillations of loops the apparent propagation of density perturbations due to the onset of the KH instability, from the apex
towards the footpoints. Both drivers input sufficient energy to drive enthalpy and mass flux fluctuations along the loop, while also
causing heating near the driven footpoint of the oscillating loop, which becomes more prominent when a low-frequency component
is included in the velocity driver. Finally, our power-law driver with the low-frequency component provides a RMS input Poynting
flux of the same order as the radiative losses of the quiet-Sun corona, giving us promising prospects for the contribution of decayless
oscillations in coronal heating.
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1. Introduction

When studying the physics of the solar atmosphere, it quickly
becomes clear that plasma is highly organised in pronounced
magnetic structures, such as coronal loops, observed in the ex-
treme ultraviolet (EUV) and soft X-rays (see Reale 2014, for a
review). This structuring is crucial for both the manifestation and
propagation of magnetohydrodynamic (MHD) waves (e.g. Ed-
win & Roberts 1983) and for energy dissipation. This is further
supported by the abundance of observations of waves in the solar
atmosphere. Of particular interest are the transverse waves (see
Nakariakov et al. 2021, for a review). Since their first detection
(Aschwanden et al. 1999; Nakariakov et al. 1999), the ubiquitous
nature of these waves has been proven through multiple observa-
tions from different instruments (e.g. Tomczyk et al. 2007; McIn-
tosh et al. 2011; Tian et al. 2012; Wang et al. 2012; Morton et al.
2015). Focusing on standing kink oscillations (Van Doorsselaere
et al. 2008) in coronal loops, there are two different regimes
to be considered. The first is that of the large-amplitude fast-
decaying oscillations excited by external energetic phenomena
(e.g. Nakariakov et al. 1999; Nechaeva et al. 2019). The second
consists of oscillations of lower amplitude that do not visibly

decay for many periods and are descriptively called decayless
oscillations (e.g. Nisticò et al. 2013; Anfinogentov et al. 2013).
They have been shown to be ubiquitous in the solar corona (e.g.
Anfinogentov et al. 2015; Zhong et al. 2022), and have also been
observed in the lower solar atmosphere (Petrova et al. 2023;
Shrivastav et al. 2024; Gao et al. 2024) and in coronal bright
points (Gao et al. 2022).

The transport of energy from the solar photosphere to the
atmosphere and its dissipation to support its multi-million de-
gree temperature corona are topics that are still not fully under-
stood to this day. The proposed heating mechanisms are usually
separated into two categories, by comparing their timescales to
the Alfvén transit time, the direct current (DC) and alternating
current (AC) mechanisms (see reviews De Moortel & Brown-
ing 2015; Van Doorsselaere et al. 2020b). Transverse oscilla-
tions are expected to lose energy through resonant absorption
(e.g. Goossens et al. 2002), phase mixing (e.g. Heyvaerts &
Priest 1983; Pagano & De Moortel 2017), and the damping in-
duced by the Kelvin-Helmholtz (KH) instability (e.g. Terradas
et al. 2008; Magyar & Van Doorsselaere 2016; Van Doorsse-
laere et al. 2021). Unless we consider decayless oscillations to
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be Line-Of-Sight effects due to the development of instabilities
in decaying oscillations (Antolin et al. 2016), only continuous
energy injection can sustain their amplitudes. That makes them
important candidates for an AC type of coronal heating mecha-
nism. The exact mechanism exciting decayless oscillations has
not yet been identified, but they are most often modelled numer-
ically as standing waves driven by monoperiodic (e.g. Karam-
pelas et al. 2017; Guo et al. 2019) and broadband footpoint
drivers (Afanasyev et al. 2020; Ruderman & Petrukhin 2021;
Ruderman et al. 2021; Howson & De Moortel 2023; Karam-
pelas & Van Doorsselaere 2024), by external flows via vortex
shedding (Nakariakov et al. 2009; Karampelas & Van Doorsse-
laere 2021), and as self-oscillatory processes (Nakariakov et al.
2016; Karampelas & Van Doorsselaere 2020).

In the last few years simulations of driven decayless oscil-
lations have shown that they carry enough energy to counter-
balance the optically thin radiative losses in the corona (e.g.
Shi et al. 2021; De Moortel & Howson 2022). However, phase
mixing from transverse waves generated by footpoint broadband
drivers is unlikely to support coronal temperatures via wave
heating (e.g. Pagano & De Moortel 2019; Pagano et al. 2020).
Staying with broadband drivers, Howson & De Moortel (2023)
have shown that linearly polarised drivers are the most efficient
in terms of energy input into driven loop oscillations, as expected
from the linear wave theory. In the same study, the development
of the KH instability was reported for broadband drivers of vari-
ous polarisations. However, only the resonant linearly polarised
driver led to spatially extended KH instability eddies and fully
deformed loops, as had been shown for the first time in Karam-
pelas & Van Doorsselaere (2018). The KH instability-induced
turbulence in transversely (Karampelas et al. 2019a) and torsion-
ally oscillating loops (Díaz-Suárez & Soler 2021, 2022, 2023)
transfers energy to smaller scales, leading to dissipation and
potentially to plasma heating. The coupling with the chromo-
sphere, and its response to heating based on resonant absorption
of Alfvén waves (Ofman et al. 1998; Van Damme et al. 2020)
and from non-linear standing kink waves (Guo et al. 2023) have
also been considered. At the same time, it has been argued that
energy release in the corona is more likely to be driven by low-
frequency motions (Howson & De Moortel 2022). It is therefore
important to include a more realistic driver with a strong low fre-
quency (or ‘DC’) component when studying the response of the
lower atmosphere to the dynamics and heating of coronal loops.

In this study we model driven transverse waves, generated by
random motions, in a gravitationally stratified loop. In our recent
study (Karampelas & Van Doorsselaere 2024), we show that this
model can lead to the development of transverse oscillations re-
sembling the recently observed decayless oscillations. Here we
focus our study on the development of the KH instability and the
energy evolution our models. In Section 2 we describe our set-up
and the methodology used to construct it. The results of our sim-
ulations are described in detail in Section 3. Finally, a thorough
discussion of the important points of this study is presented in
Section 4.

2. Numerical set-up

Our set-up consists of a 3D straight magnetic flux tube in a strat-
ified atmosphere, modelling a coronal loop with its footpoints
anchored in the chromosphere. Following the same methodology
found in our past studies (Pelouze et al. 2023; Guo et al. 2023;
Karampelas & Van Doorsselaere 2024), we first construct a 2.5D
slice of our flux tube, in cylindrical coordinates, with initial con-
ditions in hydrostatic equilibrium only along the vertical direc-

tion. We then let our set-up evolve and reach a quasi-equilibrium
state, before interpolating it into a 3D cartesian grid.

We solve the 2.5D and 3D compressible MHD equations
for a hydrogen plasma, using the PLUTO code (Mignone et al.
2007)

∂ρ

∂t
+ ∇ · (ρv) = 0 , (1)

ρ

[
∂v
∂t
+ ρ(v · ∇)v

]
= −∇p + ρ gz +

1
µ

(∇ × B) × B, (2)

ρ

[
∂ϵ

∂t
+ (v · ∇)ϵ

]
= −p∇ · v + η µ|J|2 + ∇ · Fc, (3)

∂B
∂t
= ∇ × (v × B) + η∇2B, (4)

where ρ, p, and v are the density, plasma pressure, and velocity,
and B is the magnetic field. The electric current is J = ∇ × B/µ,
with µ = 4π×10−7 H m−1 being the magnetic permeability, η the
magnetic diffusivity, and ϵ = p/

[
ρ(γ − 1)

]
the specific internal

energy density, with γ = 5/3 the ratio of the specific heats. The
quantity ∇ · Fc represents the thermal conduction term. Finally,
gz is the gravitational acceleration along the z direction. No ad-
ditional source terms such as radiative cooling or background
heating are included in our models.

We satisfy the solenoidal constraint for the magnetic field
(∇ · B = 0) through a hyperbolic divergence cleaning method,
with the extended generalized Lagrange multiplier (GLM) for-
mulation. We use the third-order Runge-Kutta method to calcu-
late the time step, and the linearised Roe Riemann solver for
computing the fluxes. For the spatial reconstruction method, we
use the second-order finite volume piecewise parabolic method
(PPM) for the 2.5D set-up, and the fifth-order monotonicity pre-
serving scheme (MP5) with a second-order global accuracy for
the 3D set-up. Only in the 2.5D set-up did we add explicit mag-
netic diffusivity to improve the stability of the code, measured
in code units as η = R−1

m = 10−4, where Rm is the magnetic
Reynolds number. The finite size of our grid in both the 2.5D
and 3D cases also gives rise to effective numerical diffusivity,
estimated of the order of 10−5 to 10−4 through a parameter study,
as well as our past findings (e.g Karampelas et al. 2019a).

We include thermal conduction, calculating the value for the
parallel thermal conduction coefficient (in J s−1 K−1 m−1) from
the Spitzer conductivity (Orlando et al. 2008), with the method
developed by Linker et al. (2001); Lionello et al. (2009) and
Mikić et al. (2013),

κ∥ = 9 × 10−12
{

T 5/2, if T > Tcut = 0.25 MK,
T 5/2

cut , if T ≤ Tcut = 0.25 MK,
(5)

where we consider a fixed cutoff temperature Tcut = 2.5× 105 K,
which is a value commonly used in past studies (e.g. Johnston
& Bradshaw 2019; Pelouze et al. 2023). The above treatment for
κ∥ leads to an artificial broadening of the transition region as the
system evolves. As discussed in Pelouze et al. (2023), this saves
us the computational costs of resolving the very steep temper-
ature gradient of the regular transition region between the so-
lar chromosphere and the corona, which would normally require
a prohibitively high resolution along the height (∼ 1 km). The
broadened transition region has a minimum temperature scale
length of 1.6 Mm (Johnston & Bradshaw 2019), which can eas-
ily be resolved by 2D and 3D simulations. Finally, the PLUTO
code accounts for saturation effects when very large temperature
gradients are considered. The conductive flux Fc varies in the
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Fig. 1. Temperature, density and Bz magnetic field profiles along the vertical direction, for z ∈ [0, 20] Mm. The left panel shows the results of
solving the 1D equation of hydrostatic equilibrium for the inside (solid line) and outside (dashed line) of the flux tube. The right panel shows the
same, but at the end of the 2.5D MHD relaxation. The subscripts refer to the values external (e) and internal (i) to the loop.

Fig. 2. Radial density and Bz magnetic field profiles at different heights
z for the flux tube after the 2.5D MHD relaxation.

code between the classical and saturated regimes (Fcl and Fs),

Fc =
Fs

Fs + |Fcl|
Fcl, Fcl = κ∥b̂

(
b̂ · ∇T

)
, Fs = 5ρϕ c3

iso, (6)

where b̂ is the unit vector along the magnetic field, ciso is the
isothermal sound speed, and ϕ is a free parameter with a default
value of 0.3 (see Mignone et al. 2007, 2012, for a detailed de-
scription).

2.1. 2.5D flux tube: Initial and boundary conditions

Initial conditions: We consider a 2.5D domain in cylindrical co-
ordinates (r, z), with size of r ∈ [0, 8] Mm and z ∈ [0, 200] Mm
and a uniform grid of 200×2048 cells. To construct our flux tube,
we consider an initial straight magnetic field Bz = 30 G and we
use a temperature profile, derived from Aschwanden & Schrijver
(2002),

T (r, z) = TCh + (TC(r) − TCh)(1 − [(L − z)/(L − ∆Ch)]2)0.3, (7)
TC(r) = TC,e + (TC,i − TC,e) ζ(r), (8)

for height ∆Ch ≤ z ≤ 200 − ∆Ch, where L = 200 Mm is the loop
length and ∆Ch = 5 Mm is the width of our chromosphere; TCh =
0.02 MK is the temperature of the chromospheric part of the loop
and TC(r) is the temperature profile at the apex (z = 100 Mm);

and TC,i = 1 MK and TC,e = 1.5 MK are the temperature values
inside and outside of the flux tube at the apex, respectively. The
function ζ(r) gives us the flux tube profile along the r direction,
with R = 1 Mm being the radius of the flux tube cross-section:

ζ(r) = 0.5 [1 − tanh (([r/R] − 1) 20)] . (9)

The density profile at the bottom of the chromosphere (z = 0 and
z = 200 Mm) is calculated as

ρCh = ρCh,e + (ρCh,i − ρCh,e) ζ(r), (10)

where ρCh,i = 3.51×10−8 kg m−3 and ρCh,e = 1.17×10−8 kg m−3

are the density values inside and outside the footpoint. Finally,
we consider sinusoidal gravity (gz(z) = 274 cos(π z/200) in m
s−2) along the z-axis, to account for the change in gravity pro-
jected along a semi-circular coronal loop. We solved the equa-
tions of the hydrostatic equilibrium along the z direction using a
forward-Euler method. To avoid asymmetries in the z-direction
in the initial conditions, we took into account the expected sym-
metry of our model with respect to the z=100 Mm plane at the
apex. In the left panel of Figure 1, we show the density, temper-
ature, and magnetic field profiles inside and outside of the flux
tube, up to 20 Mm, with the transition region shown at 5 Mm.

Boundary conditions: We consider axisymmetry at r = 0 and
open boundary conditions at r = 8 Mm for all quantities. At the
bottom (z = 0) and top (z = 200 Mm) boundaries, we take the
zero-gradient condition for the three magnetic field components
(Br, Bθ, Bz) and consider antisymmetric conditions for the three
velocity components. We also consider a constant temperature
TCh and symmetric boundary conditions for the density. This ef-
fectively prevents any flows across the top and bottom boundary
from taking place.

2.5D MHD relaxation: Since our initial 2.5D set-up was not
in hydrostatic equilibrium in the r direction, we let it evolve and
reach a semi-equilibrium state for a total time of t = 3890 s. Be-
tween t = 778 s and t = 3112 s, we artificially reduced the value
of the velocity components per iteration over the entire domain,
by using vi = vi/nd, with nd = 1.0001 and i = (r, θ, z). The ver-
tical profiles of the magnetic field, density, and temperature af-
ter the relaxation process are seen in the right panel of Figure 1,
where the widening of the transition region can also be seen. The
residual values for the velocities in our set-up have a maximum
value of ∼ 4 km s−1 along the z direction and and ∼ 0.05 km
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Fig. 3. Velocity profiles (left panel) and spectra (right panel) for our drivers. The blue curve corresponds to the red noise signal with a power-law
(∝ f −1.66) spectrum, and the orange curve to the detrended signal with spectrum S ∝ f −1.66 for f ≳ 2 mHz and reduced power at the lower
frequencies. The black dashed line shows the background trend for the original velocity signal.

Fig. 4. Integrated density (left) and temperature (middle) along the y-axis, and the vz velocity at the y = 0 plane (right). The top and bottom panels
show the domain at the last snapshots for the simulations with the detrended and red noise driver, respectively, at time t = 2554 s. Animations of
the top and bottom panels are included in the online version of this manuscript.

s−1 along the x and y directions. These values are higher than
those reported in past studies (see Pelouze et al. 2023), where
the resulting values where 0.5 km s−1 after ∼ 47000 s of relax-
ation. However, our set-up has different boundary conditions and
our method allows for a narrower transition region (similarly to
Guo et al. 2023) and for a temperature, density, and magnetic
field profile closer to those initially assigned. In addition, once
we implemented a footpoint driver into our set-ups, the gener-
ated velocities far exceeded these residual velocities. During the
relaxation, we have restructuring of the magnetic field both via
advection and through dissipation since we have non-zero resis-

tivity present. The magnetic field is no longer purely vertical, but
now consists of a radial (Br(r, z)) and a vertical (Bz(r, z)) com-
ponent. The radial component has its maximum values near the
footpoints, which are an order of magnitude lower than values of
the vertical component there. The relaxation also leads to a radial
variation of the density and temperature profiles. As an example,
Figure 2 shows the radial density and Bz magnetic field profiles
at different heights at the end of the 2.5D relaxation.
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Fig. 5. Profiles at different heights of the mean density over time, for
the loop without a driver (see ND subscript for non-driven). The three
different heights are z = 100 Mm (apex), z = 20 Mm and z = 180
Mm. The latter two showcase the symmetry of the non-driven case with
respect to the apex.

Fig. 6. Velocity profiles at z = 100 Mm (apex), calculated from the cen-
tre of mass displacement along the direction of oscillation (x direction)
for the two oscillating loops. The blue dashed line and the orange solid
line correspond to the transverse oscillations excited by the red noise
driver and detrended driver, respectively.

2.2. 3D flux tube: Initial and boundary conditions

Initial conditions: We create a straight flux tube in cartesian co-
ordinates (x, y, z), by interpolating the post relaxation state of
our 2.5D slice into the 3D grid. Our new domain has a size of
x ∈ [−6, 6] Mm, y ∈ [0, 4] Mm and z ∈ [0, 200] Mm with uni-
form spacing in the x and y directions and δx = δy = 0.040 Mm.
Along the z direction we have uniform grids with δz = 0.098 Mm
for z ≤ 10 Mm and z ≥ 190 Mm and another uniform grid with
δz = 0.8 Mm for 24 Mm ≤ z ≥ 176 Mm. Finally, we consider
stretched grids of 40 grid points each for 10 Mm ≤ z ≥ 24 Mm
and 176 Mm ≤ z ≥ 190 Mm. This provides us with the resolu-
tion, up to a height of ∼ 15 Mm, to treat the transition region,
while further reducing the computational costs. We note here,
that in our simulations we never have plasma with a transition
region temperature and density above z = 15 Mm.

Boundary conditions: At both boundaries in the x direction,
and at the y = 4 Mm boundary we employ open boundary con-
ditions for all quantities, while we are using reflective boundary
conditions at the y = 0 boundary. This enforces a symmetry to
our system, which allows us to simulate only half the flux tube,

given our driver of choice. For the top (z = 200 Mm) boundary,
we use the same conditions as in the 2.5D case. For the bottom
(z = 0) boundary, we use the same conditions until t = 202 s,
allowing our system to settle to the 3D configuration and avoid
any numerical issues that could arise.

Driver: After t = 202 s, we change the conditions for vx and
vy by applying a broadband, linearly polarised driver:

{vx, vy} = {V(t)ζ(r, t), 0}, (11)
ζ(r) = 0.5 [1 − tanh (([r/Rd] − 1) 20)] . (12)

Here, in function ζ(r, t), we consider Rd = 2.5 Mm as the radius
of the driver (i.e. the distance from the tube axis where vx , 0,
which quickly drops to zero past that radial distance). For radii
larger than Rd, vx quickly drops to zero. The time dependence
of ζ(r, t) comes from our driver tracking the tube axis, while the
latter is moving. The location of the driver is controlled by

r(t) =
√

(x − x0(t))2 + y2, (13)

where x0(t) (and y0(t) = 0) is the centre of each driver, calcu-
lated by numerically integrating the respective velocity signal
(V(t)) over time. For the velocity signal we use the Python pack-
age colorednoise 2.1.0 to create a red noise signal with a power
spectral density S ∝ f −1.66, where f is the frequency (see also
Afanasyev et al. 2020). This results in a velocity profile that can
be viewed practically as random motions along the x direction.
The use of drivers with power-law spectra of red noise type is
inspired by observations of sunspot oscillations and the dynam-
ics of magnetic bright points (Kolotkov et al. 2016; Abramenko
et al. 2011; Chitta et al. 2012). The latter, as suggested in Afan-
syev et al. 2020, can be regarded as the motion of loop foot-
points. The driving signal V(t) is shown for two different cases
in Figure 3. In blue we show the original red noise velocity sig-
nal and spectrum. The dashed black line shows the background
trend of the red noise signal, calculated with a low pass Gaussian
filter. By subtracting this background trend from the red noise
signal, we get the detrended signal, which is plotted in orange.
The RMS velocity (VRMS ) of the detrended signal (∼ 0.94 km
s−1) are comparable to the RMS velocities of horizontal motions
of magnetic bright points (∼ 1.32 km s−1) derived from SST and
Hinode observations (Chitta et al. 2012). For the red noise sig-
nal, the peak velocity amplitudes are comparable to those from
wave drivers in Howson & De Moortel (2022). The spectrum of
the detrended signal shows a maximum power between ∼ 2 to
3 mHz and has reduced power at the lower frequencies, with re-
spect to the initial signal. Hereafter, we denote the driver with the
original signal the red noise driver and the other the detrended
driver. We also run a simulation without a velocity driver, to iso-
late the evolution of the system due to the lack of a perfect initial
equilibrium.

3. Results

After we interpolated our 2.5D slice onto the 3D cartesian grid,
we then switched on the footpoint driver at t > 202 s, and until
tmax = 2552 s or 42.5 minutes. In our analysis presented below,
we focus exclusively on the coronal part of our set-up. Because
we lack a more realistic profile, the chromospheric part of our
loop is used as a mass reservoir of quasi-constant temperature,
and is used to anchor our loop footpoints.

Figure 4 shows the integrated density and temperature along
the y-axis, as well as the vz velocity profile on the y = 0 plane at
the end of the each simulation, for the set-ups with the detrended
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Fig. 7. Fourier power spectral density (PSD) profiles of the centre of mass displacement, along the coronal part of our loop. The left panel
corresponds to the loop perturbed by the red noise driver. The middle panel corresponds to the detrended version of the displacement signal
generated by the red noise driver. The right panel corresponds to the loop perturbed by the detrended driver. The PSD resolution along z equals the
numerical resolution of our set-ups.

Fig. 8. Integrated density along the y-axis and cross-sections of our loop at different heights, shown at time t = 2552 s. The top panels are for the
detrended driver and the bottom panels are for the red noise driver. The black contour lines show the heights where the integrated temperature
along the y-axis gets the value T = 0.4 MK. Animations of the two panels are included in the online version of this manuscript.

driver (top panels) and the red noise driver (bottom panels). In
the animations, an additional drop in the temperature of the coro-
nal plasma is observed, mainly outside of the loop. The latter is
the combined effect of the thermal conduction along the nearly
vertical magnetic field, and the initial non-zero vz velocity pro-
files of our system since our set-up is not in perfect pressure and
thermal equilibrium (see also the models by Pelouze et al. 2023;
Guo et al. 2023), and is also the reason why we observe a drop in
the values of the density over time. Looking at the mean density

profiles over time for different coronal heights in Figure 5, we
see this drop as manifesting in the non-driven case (i.e. for our
loop without a driver). The observed drop in the average den-
sity is of the order of ∼ 13% for z ∈ [20, 180] Mm. The three
different heights chosen are z = 100 Mm (apex), z = 20 Mm,
and z = 180 Mm. The latter two showcase the symmetry of the
non-driven case with respect to the apex.
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Fig. 9. Time distance maps of the density, integrated along the y-axis, for the our loop at different heights. The left panels are for the detrended
driver and the right panels for the red noise driver. Vertical dashed lines are added at t = 7, 12, and 17 minutes.

Fig. 10. Height vs time profiles of the temperature difference (left panels), enthalpy flux difference (middle panels), and mass flux difference (right
panels), for the set-ups with the red noise driver (RN, top) and detrended driver (DT, bottom) with respect to the non-driven case (ND). The
horizontal dotted black lines show the location of the T = 0.4 MK line. The black dashed lines show the estimated trajectory of a plasma parcel
launched from one footpoint, with a varying velocity with height, equal to the average sound speed across the loop at each height, at t = 5 minutes.

Fig. 11. The Poynting flux graphs (left and middle panels) and input energy density graphs (right panel) over time for the red noise driver (solid
blue line, RN subscript) and the detrended driver (red line, DT subscript) relative to the non-driven case (ND). The Poynting energy density input
at the approximate height of the transition region (z = 7 Mm) is also given for both drivers (dashed lines).
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Fig. 12. Energy density profiles over time, relative to the non-driven
case (ND). The solid lines correspond to the results for the red noise
driver (RN) and the dashed lines for the detrended driver (DT). The total
Poynting energy input (black lines) from z = 7 Mm and z = 193 Mm
and the internal energy (red lines) for the coronal part of the loop (x ∈
[−6, 6] Mm, y ∈ [0, 4] Mm and z ∈ [7, 193] Mm) are shown.

3.1. Wave excitation and propagation

Using the previously described broadband drivers, we excite lin-
early polarised waves of different frequencies into our domain.
Pelouze et al. (2023) have shown that the cutoff of transverse
waves at frequencies above 2 mHz only results in a weak atten-
uation, with the waves being able to transport energy from the
chromosphere to the corona. Given the range of frequencies for
the two drivers, both of which exhibit similar power distribution
between 2 mHz and 3 mHz, we expect the drivers to excite prop-
agating transverse waves that will reach the coronal part of the
loop, forming a standing oscillation pattern.

From the accompanying animations of Figure 4, we see that
the drivers generate a large number of transverse and longitudi-
nal waves that superimpose and set up oscillations in each loop.
The first thing we note is the existence of localised perturbations
in the temperature, density (less visible), and vz profiles that can
be described as longitudinal wave pulses. Due to the speed of
their propagation along the magnetic field, these perturbations
are expected to be slow waves, as we show later on via our anal-
ysis.

Focusing on the transverse waves, the accompanying anima-
tions of Figure 4 for the case with the detrended driver reveal
an apparent standing transverse oscillation for our loop. Simi-
larly, transverse oscillations are shown to be generated by the
red noise driver. The power distribution of the latter, with its in-
creased contribution from the lower frequencies, leads to a trans-
verse displacement of the loop footpoint at z = 0, in addition
to what again appears to be a standing transverse oscillation.
In Karampelas & Van Doorsselaere (2024), transverse standing
waves described as decayless oscillations were reportedly gener-
ated in simulation by the same red noise driver for various loop
set-ups. Figure 6 shows the vx velocity profiles calculated from
the oscillating signals of the centre of mass displacement for the
two loops, generated by the two drivers. We see that these two
signals exhibit a very similar behaviour, with comparable veloc-
ity peak amplitudes, as well as RMS velocities of ∼ 2.5 km s−1

and ∼ 2.3 km s−1 for the loop driven by the red noise and de-
trended driver, respectively. The frequencies of the oscillations
match those of the fundamental standing kink mode and its har-
monics, with Fourier power spectral density (PSD) profiles for
the centre of mass displacement similar to those shown in Fig-
ure 7. The left profile shows the PSD of the original centre of

mass displacement and the middle profile shows the PSD of the
detrended displacement, after applying a high pass filter to re-
move the low-frequency motions. We can see that the spectrum
of the detrended signal from the centre of mass displacement, ex-
cited by the red noise driver, is qualitatively very similar to the
spectrum of the loop oscillation excited by the detrended driver.

3.2. Development of the Kelvin-Helmholtz instability

The top panel of Figure 8 shows the last snapshot of the simula-
tion (t = 2554 s) for our oscillating loop for the detrended driver.
On the left side of that panel, we see the integrated density along
the y direction for the coronal loop. Also visible is the contour
line for T = 0.4 MK for the integrated temperature along the
y direction, which we use as an (extreme) upper limit for the
broadened transition region in our set-up. On the right side of
that panel, we see the loop cross-section for the density at dif-
ferent coronal heights. In the accompanying animation, we see
that the loop cross-sections shown here are fully deformed by
the development of the KH instability, all along the coronal part
of the loop. Thus, we show that our broadband kink wave driver
leads to the manifestation of the KH instability across the entire
volume of the coronal part of the loop, leading to fully deformed
3D loops. In the bottom panel of Figure 8, we also see the last
snapshot for an oscillating loop driven by a red noise-type driver.
Again, we report the development of the KH instability and the
complete deformation of the loop cross-section along the coronal
part of the loop, alongside the aperiodic footpoint displacement
that exceeds the amplitude of the loop oscillation.

The temporal evolution of the KH instability is shown for
both drivers in Figure 9, through time-distance maps (t − x) of
density integrated along y. The left panels deal with the loop re-
sponse to the detrended driver, and the right panels with the loop
response to the red noise driver. We placed slits along x, at three
different heights for our domain (z = 30, 100, and 170 Mm). We
observe the gradual drop in the average density of the loop apex
over time. This is mainly due to the mixing of the loop plasma
with the hotter and less dense background coronal plasma (from
the KH instability), and to a lesser extent due to the ponderomo-
tive force associated with slow waves generated by the driver and
the effects of the thermal conduction to the energy balance of the
system (Guo et al. 2023). We see the displacement of the driven
footpoint for the red noise driver, caused by the low-frequency
motions of the driver. We also detect a small initial phase differ-
ence in the displacement among the driven footpoint, the loop
apex, and the anchored footpoint, due to the waves propagating
along the loop from the driven footpoint. This difference effec-
tively vanishes after 1.5 periods (or at t ∼ 17 minutes), due to the
formation of the standing wave.

Signs of the KH instability are present for both drivers; they
are in fact slightly more prominent for the loop with the red noise
driver, thanks to the additional driver energy causing stronger
shear velocities. However, both simulations exhibit a qualita-
tively similar behaviour in the spatial and temporal evolution
of the KH instability. Looking at the apex (z = 100 Mm), we
see that the instability starts developing properly after ∼ 1 − 1.5
wave periods, which is after the standing wave has formed. It is
interesting to note here that some fainter traces of density max-
ima, which seem to be caused by the KH instability, appear by
the time the propagating transverse kink wave reaches the apex..
This can also be seen in either animation of Figure 8. From the
linear analysis, we do not expect the propagating waves to be KH
unstable (Heyvaerts & Priest 1983). However, the strong veloc-
ity shear from the unidirectional propagating kink waves, which
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is also amplified by resonant absorption (e.g. Antolin & Van
Doorsselaere 2019), together with the density structure trans-
verse to the mean magnetic field, could non-linearly lead to a
weak manifestation of the KH instability, similarly to and along-
side the manifestation of uniturbulence there (e.g Magyar et al.
2017; Van Doorsselaere et al. 2020a).

Both simulations exhibit a small delay to the manifestation
and development of the KH instability near the anchored foot-
point, with respect to the loop apex. This delay, which is smaller
than 1 min, can be identified as a small phase difference in the
appearance of the density maxima in between the z = 100 Mm
and z = 170 Mm panels in Figure 9, during the first two periods
of oscillation. We also see an apparent delay in the manifesta-
tion of the KH instability at the driven footpoint with respect to
the anchored footpoint. However, examining the animations of
Figure 8 reveals no such delay; instead, these apparent effects
are due to compression near the driven footpoint, saturating the
signal in the first two periods.

3.3. Energy evolution of the oscillating loops

In order to study the effects of our drivers on the energy evolution
of the system, we calculate the surface average temperature (Ti),
enthalpy flux (E), and mass flux (M) for our set-ups, at each
height for the duration of the simulations:

Ti(z, t) =
1
A

∫
A′

Ti(z, t)dA′, (14)

Ei(z, t) =
1
A

∫
A′

γ

γ − 1
pivz,1dA′, (15)

Mi(z, t) =
1
A

∫
A′
ρivz,idA′. (16)

Here i corresponds to the red noise driver (RN), the detrended
driver (DT), and the non-driven case (ND); γ = 5/3; and A is the
surface area of the xy plane. Figure 10 shows the difference in
the mean temperature (TRN,DT − TND), enthalpy flux (ERN,DT −

END), and mass flux (MRN,DT − MND) for both driven set-ups
(RN, top panels; DT, bottom panels), with respect to the non-
driven case (ND). The dotted black lines trace the height where
T = 0.4 MK, which we consider as the uppermost limit of the
transition region.

In these panels we detect perturbations generated and prop-
agating from the driven footpoint, which are also reflecting at
the anchored footpoint, similarly to past cases (e.g. Guo et al.
2019, 2023; Karampelas et al. 2019a). The dashed black lines
in the panels show the calculated trajectory of a plasma parcel
along the z direction, when we consider a varying velocity with
height, corresponding to the profile along the z-axis of the aver-
age sound speed at t = 5 minutes. These perturbations are almost
parallel to the dashed lines. This shows that these perturbations,
which were also detected in Figure 4, are in fact slow waves that
propagate along the near-vertical magnetic field.

From the difference of the mean temperature, in the left pan-
els of Figure 10, we see a drop in the mean temperature along the
loop over time, which is more prominent for the set-up with the
red noise driver. This drop in the mean temperature is expected
in part due to thermal conduction and the thermal imbalance be-
tween the hotter coronal and the colder chromospheric parts, as
mentioned at the beginning of Section 3. The development of
the KH instability also leads to an apparent drop in the average
temperature, due to the mixing of the cooler loop plasma with
the hotter background coronal plasma, as expected from our past

studies of colder loops embedded in a hotter corona (e.g. Karam-
pelas et al. 2017). In the same panels, we also see a symmetry
along the z direction in the variation of the relative tempera-
ture profile that suggests an adiabatic response of our systems
to the effects of the ponderomotive force along the oscillating
loop, which has also been observed in past studies (Terradas &
Ofman 2004; Karampelas et al. 2019a; Van Damme et al. 2020;
Guo et al. 2023). These effects are stronger for the case of the red
noise driver, due to the stronger perturbations that it imposes to
the driven footpoint. The detected gradual increase in the tem-
perature at the transition region, above the driven footpoint, is
also associated with the launch of slow waves by that propagate
along the loop, dissipating their energy. This can be seen in Fig-
ure 4, where we relate the increase in temperature and density to
the slow waves shown in the vz profile.

The middle and right panels of Figure 10 show similar be-
haviour for the enthalpy and mass flux along the loop. We see
an initial enthalpy and mass flux towards the footpoints, due to
the ponderomotive force, alongside small spikes of enthalpy and
mass flux from the driven footpoints to the apex. These spikes,
which follow the trajectory of the slow waves, are related to the
respective temperature increase from the dissipation of the slow
waves, in our model. The stronger enthalpy and mass fluxes are
connected to higher values of temperature increase at the driven
footpoint. As a final note, we saturated the colourmaps in the
plots for the mass flux, in order to reveal the evolution of the
coronal part of the loop. The density in the transition region
and chromosphere at the loop footpoints is orders of magnitudes
higher than in the coronal part and as a result exhibits higher
values for the mass flux.

We also calculated the surface averaged Poynting flux (S )
and the cumulative electromagnetic energy density input due to
the Poynting flux (ES ) from each driver over time:

S (t) = −
1
A

∫
A′1

1
µ0

[(v × B) × B] · dA′1, (17)

ES (t) = −
1
V

∫ t

0

∫
A′1

1
µ0

[(v × B) × B] · dA′1dt′. (18)

Here A1 is the surface area of the xy-plane (bottom and/or top
boundary), V is the volume of our domain, and dA′1 is the nor-
mal vector to the xy-plane. In the left panel of Figure 11 we plot
the Poynting flux over time at the bottom boundary (z = 0) for
the red noise driver (with blue) and the detrended driver (with
red), after subtracting the Poynting flux generated by the residual
non-zero velocities of the non-driven case. In the middle panel
of the same figure, we also plot the respective Poynting fluxes
at the z = 7 Mm, which is the average height of the top of our
broadened transition region (i.e. the base of the coronal part of
the simulation domain) at the driven footpoint. We see that the
red noise driver generates a stronger Poynting energy flux to our
system than the detrended driver, which leads to a higher total
Poynting energy density input into our system, from the z = 0
plane, as seen in the right panel of Figure 11. In the same panel
we also depict the cumulative Poynting energy density input at
the approximate position of the base of the corona (z = 7 Mm).
We see that only a small part of the total input energy passes
into the corona in the form of a Poynting flux. The reduction of
Poynting flux between z = 0 and z = 7 Mm implies that energy
has been deposited between the driving boundary and the base
of the corona, which is expected to lead to plasma heating and
evaporation in the chromosphere and the transition region. Such
behaviour is already detected in Figure 10, as a combination of
wave heating and the adiabatic effects from the ponderomotive
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force, and is more prominent in the case of the red noise driver,
which explains the stronger enthalpy and mass fluxes along the
loop. Additional physics, such as radiation and partial ionisa-
tion effects, are required to better quantify the chromospheric
response to the heating. However, our set-up shows that a sig-
nificant part of wave energy dissipation will take place in the
lower solar atmosphere, and its response in the evolution of the
coronal energetics should not be ignored, as is often the case in
theoretical studies of purely coronal loops.

Finally, to better understand the energy evolution of our
systems, we calculate the internal energy density in the coro-
nal part of the loop (x ∈ [−6, 6] Mm, y ∈ [0, 4] Mm and
z ∈ [7, 193] Mm):

I(t) =
1
V

∫
V ′

p
γ − 1

dV ′ − F(t), (19)

F(t) =
1
V

∫ t

0

∫
A′

(
ρv2

2
+ ρΦ +

γp
γ − 1

)
v · dA′dt. (20)

Here F(t) is the energy flux through the boundaries due to the
plasma flow, V is the volume of the domain, Φ is the gravita-
tional potential, and dA′ is the normal vector to each boundary.
Following the same methodology as in past studies (e.g. Karam-
pelas et al. 2019a; Guo et al. 2023), we subtract the energy flux
through every boundary from the internal energy density in or-
der to compensate for energy variations due to the plasma and
enthalpy flux in our system, and focus on the energy variation
due to the driving. In Figure 12 we plot the compensated inter-
nal energy (I) for the coronal part of the loop (red lines) for the
two different cases (with the red noise driver RN and the de-
trended driver DT) relative to the non-driven case (ND). Along-
side them, we plot the cumulative Poynting energy input (ES ).
Unlike in Figure 11, here we calculate this input at z = 7 Mm
and at z = 193 Mm, taking into account the response of the
non-driven footpoint to the oscillations. The profiles in Figure
12 show a stronger increase in the relative internal energy of the
loop, when the red noise driver is considered. Since the red noise
driver results in more energy input into the corona than the de-
trended driver, this higher increase indicates that wave energy
dissipation is at least in part responsible for this apparent heat-
ing that we detect. In the case of the detrended driver, we detect
a drop in the Poynting input that is not followed by a decrease in
the compensated internal energy. Although this seems peculiar
at first glance, it can be explained when considering two things.
First of all, the input energy is introduced in the form of waves,
the dissipation of which contributes to the increase in the inter-
nal energy. Given the observed delayed response of the internal
energy profiles to the Poynting input, as seen for both cases, a
temporary drop in the cumulative Poynting energy input due to
an increase in negative Poynting fluxes will not manifest directly
in the internal energy evolution. The second thing to note is that
our loop exhibits higher internal energy density values than the
surrounding plasma, as can be calculated from the initial con-
ditions. Therefore, the KH instability-induced mixing of plasma
and the plasma flows along the loop will lead not only to the
apparent drop in temperature discussed in Figure 10, but also to
an apparent increase in the average internal energy density of
our system. However, the correlation between the driver energy
input and the internal energy increase indicates the presence of
wave heating in our domain, similarly to the findings of Guo
et al. (2023).

4. Discussion and conclusions

This aim of this study is to address the effects of random mo-
tion footpoint drivers on the evolution of oscillating loops, with
a focus on the manifestation of instabilities. We worked with
a straight flux tube, modelling a gravitationally stratified coro-
nal loop with a chromospheric part and an artificially broad-
ened transition region, based on the work done by Pelouze et al.
(2023) and Guo et al. (2023). In our analysis, we focused on
the dynamics of the coronal part, while treating the lower chro-
mosphere as a mass reservoir and an anchor to our loop foot-
points. We dropped the older approach of a monoperiodic reso-
nant driver, to instead use a coloured noise footpoint driver, sim-
ilar to the one used in Afanasyev et al. (2020).

Our drivers excite transverse oscillations in our loop, as a
superposition of waves of different frequencies. These oscilla-
tions that are observed alongside the background aperiodic sig-
nals were shown in the past to have properties of decayless oscil-
lations; specifically, they are standing transverse waves of non-
decaying amplitude, with frequencies corresponding to the fun-
damental standing kink mode and its overtones (Karampelas &
Van Doorsselaere 2024). Our drivers also excite slow waves,
propagating along the loop, which have also been reported in
past studies of coronal loops undergoing driven transverse oscil-
lations (e.g. Karampelas et al. 2019a).

We report the development of the KH instability in coronal
loops with chromospheric footpoints driven by broadband ran-
dom motion footpoint drivers. The manifestation and growth of
the instability only properly takes place after the onset of the
standing waves, after ∼ 1.5 oscillation periods. Both drivers ex-
hibit an almost identical qualitative behaviour for the spatial and
temporal evolution of the KH instability. The only difference is
that the instability is slightly more prominent for the red noise
driver, which has retained its high power at the lower frequen-
cies, leading to stronger shear velocities.

The KH instability has been reported in the past for trans-
versely oscillating loops, driven by single frequency resonant
and non-resonant kink mode drivers (e.g. Afanasyev et al.
2019), and by broadband transverse wave drivers (Pagano &
De Moortel 2019; Howson & De Moortel 2023). However, only
monochromatic transverse wave drivers with frequency equal to
that of the fundamental standing kink mode of the oscillating
loop had been known to lead to fully deformed cross-sections,
as shown in Karampelas & Van Doorsselaere (2018) (see also
Howson & De Moortel 2023, for the case of the linearly po-
larised, monoperiodic resonant driver). For our set-up of a gravi-
tationally stratified coronal loop with chromospheric footpoints,
we showed that broadband transverse wave drivers with a power-
law spectrum can also lead to fully turbulent cross-sections due
to the KH instability, across the entire volume of the coronal part
of the loop.

In our simulations, the detrended driver has a RMS veloc-
ity (VRMS ) of ∼ 0.94 km s−1. This is lower than, but comparable
to, the RMS velocities of ∼ 1.32 km s−1 derived from SST and
Hinode observations of the horizontal motions of solar magnetic
bright points (Chitta et al. 2012), which might be regarded as the
motion of the loop footpoints. The RMS velocity of the driver
is also notably lower than that of harmonic resonant drivers
that were used in past studies (for example, ∼ 2.828 km s−1 in
Karampelas et al. 2019b), which are also expected to provide
energy more efficiently into the system (Howson & De Moortel
2023). Despite these setbacks, our low VRMS driver can still lead
to spatially extended KH instability eddies and turbulent coronal
parts in our loops. A similar evolution of the KH instability is
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also reported for our power-law broadband driver with the full
red noise spectrum, further supporting the hypothesis that the
KH instability should be present in oscillating loops in the solar
corona.

Both drivers showcase a small delay in the manifestation
of the KH instability near the anchored footpoint with respect
to the loop loop apex, of the order of 1 min. This delay can
be seen by the initial manifestation of the density maxima in
Figure 9. In De Pontieu et al. (2022), apparent propagation ef-
fects, associated with the onset of KH instability, have been re-
ported in synthetic observations with temporal, spatial, and spec-
tral resolution targeted at the upcoming Multi-slit Solar Explorer
(MUSE) mission. These propagation effects had been observed
only for non-driven impulsively oscillating loops for the funda-
mental standing kink mode, while they could not be identified
for monochromatically and resonantly driven oscillations. Here
we have the first report of such apparent propagation effects in
simulation data for driven kink oscillations in general, and from
broadband drivers with power-law spectra in particular. Our re-
sults cast doubt on the potential role of these propagation effects
as a tool to distinguish footpoint driven from impulsive trans-
verse loop oscillations, as was suggested in De Pontieu et al.
(2022), bringing the need for further investigation.

As a final point, we need to discuss the potential role of trans-
verse loop oscillations in counterbalancing the optically thin ra-
diative losses, which has been the focus of many recent studies
(e.g. Shi et al. 2021; De Moortel & Howson 2022). A crucial
piece of the puzzle, is identifying a way for the provided en-
ergy to reach the dissipation scales. In Karampelas et al. (2019a),
the turbulent cascade of energy is reported in simulations of
transversely oscillating coronal loops, fully deformed by the KH
instability. In Hillier et al. (2020), the efficiency of KH insta-
bility induced turbulence in plasma heating is debated for de-
cayless loop oscillations driven by a monochromatic resonant
driver. However, our current study shows that power-law-type
transverse drivers also lead to KH instability-induced turbulence.
These drivers also contain a DC, or low-frequency component
with a higher power spectral density. The additional energy input
from that DC component of the red noise driver leads to a higher
temperature increase than the driver without this low-frequency
component, similarly to what is discussed in Howson & De
Moortel (2022). The RMS input Poynting flux from the red noise
driver in our simulations is calculated to be ∼ 310 J s−1 m−2, as
opposed to ∼ 83 J s−1 m−2 for the detrended driver and the bot-
tom boundary. This value for the red noise driver is comparable
to the expected radiative losses for the quiet-Sun (Withbroe &
Noyes 1977). Looking at the base of the corona (z ∼ 7 Mm), the
corresponding values of the Poynting flux are ∼ 38 J s−1 m−2 for
the red noise driver and ∼ 20 J s−1 m−2 for the detrended driver,
which are less than the required values to replenish the coronal
radiative losses. This is due to the poor transmission of energy
across the transition region, which leads to plasma heating and
evaporation at the transition region, as shown in Figure 10. We
note here that quantitatively, any numerical results will be af-
fected by a number of different factors, such as the grid resolu-
tion in the transition region and the corrections used to resolve
the dynamics in the top of the chromosphere. Johnston & Brad-
shaw (2019) showed that using a constant cutoff temperature in
the thermal conduction coefficient can lead to an underestima-
tion of coronal densities during evaporation from heating events,
while Howson & Breu (2023) showed that a constant cutoff tem-
perature can lead to an overestimation of the wave energies in
the corona. This study also showed that the errors depend upon
the frequencies of the waves that are reaching the transition re-

gion, as well as the resolution used. Despite these limitations
due to the numerical methods employed, however, the resulting
Poynting fluxes at z = 0 and z = 7 Mm can still give us impor-
tant insight into the evolution of such systems. Due to the small
value of the magnetic field near the footpoints in our set-ups, our
velocity driver provides a much lower RMS Poynting flux than it
would have in a more realistic set-up, with a footpoint magnetic
field of the order of many hundreds G for the same velocity am-
plitudes. Even if the bulk of that Poynting energy density input
does not reach the corona, as shown in Figure 11, due to attenua-
tion at the transition region (see the cutoff for frequencies below
2 mHz in Pelouze et al. 2023), it could still lead to heating of the
lower atmosphere, and have an indirect effect on the mass and
energy balance of oscillating loops, as hinted by our findings for
the temperature, mass flux and enthalpy flux in Figure 10.
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